The process of taking common factors out in an algebraic expression is called factorising

**E.g.1**

2x + 8

2(x + 4)

**E.g.2**

2x + 8y

2(x + 4y)

**E.g.3**

4x^{2} + 6x

2x(2x + 3)

**E.g.4**

ax^{2}p - 2ax^{3}r

ax^{2}(p - 2xr)

In this method, we pair up the terms and then factorize twice as follows:

x^{2} + 6x + 2x + 12

x^{2} + 6x + 6x + 12

First factorizing:

x(x + 6) + 2(x + 6)

Second factorizing:

(x + 6)(x + 2)

**E.g.1**

2ax + 6ay + bx + 3by

2a(x + 3y) + b(x + 3y)

(x + 3y)(2a + b)

**E.g.2**

xk - xl - yk + yl

x(k - l) - y(k - l)

(k - l)(x - y)

**E.g.3**

x^{2} - 6x + 4x - 24

x(x - 6) + 4(x - 6)

(x - 6)(x + 4)

**E.g.3**

x^{2} - 3x - 2x + 6

x(x - 3) - 2(x - 3)

(x - 3)(x - 2)

An expression with the highest term of x being a squared one, is called a quadratic expression.

**E.g.1**

x^{2} + 6x + 8

Think of two factors of 8 that add up to 6 - *4 and 2.*

Now, split up the middle term into 4x and 2x

x^{2} + 4x + 2x + 8

Now, factorize in pairs

x^{2} + 4x + 2x + 8

x(x + 4) + 2(x + 4)

(x + 4)(x + 2)

**E.g.2**

x^{2} - 6x + 8

Think of two factors of 8 that add up to -6 - *-4 and -2.*

Now, split up the middle term into -4x and -2x

x^{2} - 4x - 2x + 8

Now, factorize in pairs

x^{2} - 4x - 2x + 8

x(x - 4) - 2(x - 4)

(x - 4)(x - 2)

**E.g.3**

x^{2} + 6x - 16

Think of two factors of -16 that add up to 6 - *8 and -2.*

Now, split up the middle term into 8x and -2x

x^{2} + 8x - 2x - 16

Now, factorize in pairs

x^{2} + 8x - 2x - 16

x(x + 8) - 2(x + 8)

(x + 8)(x - 2)

**E.g.1**

2x^{2} + 13x + 6

Multiply 2 and 3 first - 2 x 6 = 12.

Think of two factors of 12 that add up to 13 - *12 and 1.*

Now, split up the middle term into 12x and x

2x^{2} + 12x + x + 6

Now, factorize in pairs

2x^{2} + 12x + x + 6

2x(x + 6) + 1(x + 6)

(x + 6)(2x + 1)

**E.g.2**

3x^{2} - 11x + 6

Multiply 3 and 6 first - 3 x 6 = 18.

Think of two factors of 18 that add up to -11 - *-9 and -2.*

Now, split up the middle term into -9x and -2x

3x^{2} - 9x - 2x + 6

Now, factorize in pairs

3x^{2} - 9x - 2x + 6

3x(x - 3) - 2(x - 3)

(x - 3)(3x - 2)

**E.g.3**

4x^{2} - 8x - 5

Multiply 4 and 5 first - 4 x 5 = -20.

Think of two factors of 20 that add up to -8 - *-10 and 2.*

Now, split up the middle term into -10x and 2x

4x^{2} - 10x + 2x - 5

Now, factorize in pairs

4x^{2} - 10x + 2x - 5

2x(2x - 5) + 1(2x - 5)

(2x - 5)(2x + 1)

x^{2} - y^{2} = (x + y)(x - y)

**E.g.1**

x^{2} - 9

x^{2} - 3^{2}

(x + 3)(x - 3)

**E.g.2**

4x^{2} - 9y^{2}

(2x)^{2} - (3y)^{2}

(2x + 3y)(2x - 3y)

**E.g.3**

x^{2} - 9/4

x^{2} - (3/2)^{2}

(x + 3/2)(x - 3/2)

**E.g.4**

x^{3} - 9x/4

x[x^{2} - 9/4]

x[x^{2} - (3/2)^{2}]

x[(x + 3/2)(x - 3/2)]

x(x +3/2)(x - 3/2)

**E.g.4**

Find 101^{2} - 99^{2}

(101 - 99)(101 + 99)

2 x 200

400

**Now, please practise the following:**

- 3x
^{2}- 12x - x
^{2}- 12x + 20 - 2x
^{2}- 9x -5 - x
^{2}- 25/49 - x
^{3}- 36x/81

This is a vast collection of tutorials, covering the syllabuses of GCSE, iGCSE, A-level and even at undergraduate level.
They are organized according to these specific levels.

The major categories are for core mathematics, statistics, mechanics and trigonometry. Under each category, the tutorials are grouped according to the academic level.

This is also an opportunity to pay tribute to the intellectual giants like Newton, Pythagoras and Leibniz, who came up with lots of concepts in maths that we take for granted today - by using them to serve mankind.

~~"There's no such thing as a free lunch."~~

The best things in **nature** are free with no strings attached - fresh air, breathtakingly warm sunshine, scene of meadow on the horizon...

Vivax Solutions, while mimicking nature, offers a huge set of tutorials along with interactive tools for free.

Please use them and excel in the sphere of science education.

Everything is free; not even **registration** is required.

Maths is challenging; so is finding the right book. K A Stroud, in this book, cleverly managed to make all the major topics crystal clear with plenty of examples; popularity of the book speak for itself - 7^{th} edition in print.