Guillaume de l'HÃ´pital, famously known as L'Hospital, came up with a method to deal with fractions, when they take the **indeterminate** forms, approaching certain limits.

The indeterminate form can be as follows:

- 0/0 - as in the case of
**sin(x)/x**, when x approaches 0 - ∞ / ∞ - as in the case of
**e**, when x approaches ∞^{x2}/ x^{2}

L'Hospital Rule help us deal with situations of this kind. It is as follows:

In all the following animations, **[f(x)/g(x)]** is drawn in **red** and **[f'(x)/g'(x)]** in **purple.**

Please note the **convergence** pf the two curves / lines to the same point, as the limit approaches.

**E.g.1**

Find Limit [(4x-3)/(5x-6)] as x approaches ∞.

If x = ∞, then [(4x-3)/(5x-6)] = ∞/∞ - indeterminate

Let's use L'Hospital rule for this:

f'(x)/g'(x) = 4/5 = 0.8, as x approaches ∞

**E.g.2**

Find Limit [(x-4)/ln(x-3)] as x approaches 4.

If x = 4;, then [(x-4)/ln(x-3)] = 0/0 - indeterminate

Let's use L'Hospital rule for this:

f'(x)/g'(x) = 1/(1/x-3) = 1, as x approaches 4.

**E.g.3**

Find Limit [ln(x)/√x] as x approaches ∞.

If x = ∞, then [ln(x)/√x] = ∞/∞- indeterminate

Let's use L'Hospital rule for this:

f'(x)/g'(x) = (1/x)/(1/2)x^{-1/2} = 2/√x = 0, as x approaches ∞.

The behaviour of the curve will be clearer when x is really large.

**E.g.4**

Find Limit [(x^{2} -x - 6)/(x^{2} -3x)] as x approaches 3;.

If x = 3, then [(x^{2} -x - 6)/(x^{2} -3x)] = 0/0 - indeterminate

Let's use L'Hospital rule for this:

f'(x)/g'(x) = (2x-1)/(2x-3) = 5/3, as x approaches 3.

**E.g.5**

Find Limit sin(x) /x as x approaches 0 and hence sketch y = sin(x)/x.

sin(x) /x when x approaches 0 = sin(0)/0 = 0/0 - indeterminate

Let's use L'Hospital rule for this:

f'(x) = cos(x); g'(x) = 1

So, f'(x)/g'(x) = cos(x)/1

When x approaches 0, f'(x)/g'(x) = 1/1 = 1

Therefore, sin(x)/x, when x approaches 0 = 1.

This is a vast collection of tutorials, covering the syllabuses of GCSE, iGCSE, A-level and even at undergraduate level.
They are organized according to these specific levels.

The major categories are for core mathematics, statistics, mechanics and trigonometry. Under each category, the tutorials are grouped according to the academic level.

This is also an opportunity to pay tribute to the intellectual giants like Newton, Pythagoras and Leibniz, who came up with lots of concepts in maths that we take for granted today - by using them to serve mankind.

~~"There's no such thing as a free lunch."~~

The best things in **nature** are free with no strings attached - fresh air, breathtakingly warm sunshine, scene of meadow on the horizon...

Vivax Solutions, while mimicking nature, offers a huge set of tutorials along with interactive tools for free.

Please use them and excel in the sphere of science education.

Everything is free; not even **registration** is required.

Maths is challenging; so is finding the right book. K A Stroud, in this book, cleverly managed to make all the major topics crystal clear with plenty of examples; popularity of the book speak for itself - 7^{th} edition in print.