Resultant of Forces

The resultant of two forces is a vector; it has both a direction and an angle from a given direction.

Resultant of Two Forces

$$
\mathrm{R}=\sqrt{\mathrm{p}^{2}+\mathrm{q}^{2}}
$$

$$
\begin{aligned}
\mathrm{R} & =\sqrt{4^{2}+3^{2}} \\
& =5 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =4 / 3 \\
\theta & =\tan ^{-1}(4 / 3) \\
\theta & =53.1^{\circ}
\end{aligned}
$$

Based on the above example, the resultant of any number of forces that act at a point can be calculated.

When the forces do not act along the main axes, they can be resolved along the directions.

When a force is resolved, it always has two components:

- The components are on either side of the force in question
- The components are perpendicular to one another

The component closer to the angle is the one with the cosine of the angle.

These are some practice questions. Make sure the magnitude and the angel of resultant force are calculated.

Find the resultant of the following system of forces.

Ans: $13 \mathrm{~N} ; 67.4^{\circ}$
3)

Ans: $10 \mathrm{~N} ;-36.9^{\circ}$

Ans: $13 \mathrm{~N} ; 67.4^{\circ}$
5)

Ans: $4 \sqrt{ } 5 \mathrm{~N} ; 26.6^{\circ}$
6) Ans: 0N

